Question 13

Miriam is trying to find the volume of the water tank shown in the photograph on the right.

She takes some measurements and draws a diagram. Part of her diagram is shown below.

(a) Using the diagram, find the value of x. Give your answer in metres, correct to two decimal places.

Source: www.watertowersofireland.com. Altered.

$$
\frac{x}{20}=\tan 30^{\circ} \quad \Rightarrow \quad x=11.547=11.55 \mathrm{~m}(2 \text { decimal places })
$$

(b) The angle of elevation to the bottom of the water tank is 30°, as shown in the diagram. The angle of elevation to the top of the water tank is 38°.
Find the distance marked h on the photograph. Give your answer correct to one decimal place.

	\Rightarrow \Rightarrow	$\begin{aligned} & \frac{x+h}{20}=\tan 38^{\circ} \\ & x+h=20 \tan 38^{\circ}=15.626 \\ & h=15.63-11.55 \\ & =4.08 \quad=4.1 \mathrm{~m}(1 \text { decimal place }) \end{aligned}$

(c) Hugh is also trying to find the volume of the water tank.

He estimates that the height, h, is 4.5 m .
By taking measurements from the photograph and performing calculations, use Hugh's value of h to estimate the volume of the water tank as accurately as you can.
Give your answer correct to the nearest m^{3}.
State clearly what shape you are taking the water tank to be.

Shape of water tank:
Cylinder
[Step 1]

Measurements from photograph (label each measurement):
Diameter $\quad=5.2 \mathrm{~cm} \quad[\Rightarrow \quad$ Radius $=2.6 \mathrm{~cm}]$

Height $=2.2 \mathrm{~cm}$

Calculations:

$$
\frac{\text { Actual radius }}{2 \cdot 6}=\frac{4 \cdot 5}{2 \cdot 2} \quad \Rightarrow \text { Actual radius }=5 \cdot 318 \ldots \mathrm{~m}
$$

$$
\begin{align*}
\text { Volume of cylinder } & =\pi \times r^{2} \times h \tag{Step4}\\
& =\pi \times(5 \cdot 318)^{2} \times 4 \cdot 5 \\
& =399 \cdot 81 \ldots
\end{align*}
$$

Volume of water tank, in m^{3} :

$$
400 \mathrm{~m}^{3} \text { (nearest } \mathrm{m}^{3} \text {) }
$$

